Project report for the CG 100433 course

Project Title

Auto-moving Chess Game

Team member

1952114 FHF4R
1950084 [MR¥EAR
1952112 AR
1952106 &*Z1H
1952547 FLZ3E
1853047 fLIKR

Abstract

As we know, chess has complex forms and delicate textures, which can well reflect
detailed light effect. Because the emphasis is openGL, not games. We decided to work on
Auto-moving Chess Game project. We used many techniques including Jason to analysis gltf
model, Cubemaps technique to make skybox, bloom technique, PBR shader with IBL, Gamma
Correction and HDR technique. And we implemented an integrated and logical frame to
control each chess piece, realized moving, rocking and beating other chess pieces with well-
organized camera controlling and moving.

Motivation

We like to play chess. Chess represents wisdom, friendship and Steady. And chess has
complex forms and delicate textures, which can well reflect detailed light effect. Although the
rule of chess is complex, simplified auto-moving chess game is easier to implement. In order
to have enough time to learn more things about OpenGL, we choose Auto-moving Chess
Game as our project.

The Goal of the project

The original goal of the project is to make dynamic wallpaper with beautiful chess scenes.
We aimed at using a wide variety of techniques to render the scenes more vivid. Chess has to
be moved according to rules and can eat other chess piece. Because of the limited time, we
have not deploy it to the dynamic wallpaper.

The Scope of the project

® Use Ray-Tracing technique to make the scenes more vivid.
® Add the chess Al to play chess with players automatically.

® Add friendly camera control. All control can be done by one
mouse/touchpad/touchscreen.
® Add smooth animations to the chess when interacting and floating effect when it's still.

Involved CG techniques

® Skybox —— remote background that won't translate with the camera.

® HDR —— Show details even if the scene is too bright or too dark

® PBR —— Using physical based render principle to render liver scenes.

® |BL —— collect lights from images to make chess pieces reflect the light of Skybox.

® Bloom —— using Gaussian blur to make object have blurred halo and look like emitting
lights.

Project contents

HDR
HLSL Shader
models_new
models_outlining
skybox
skybox2
x64
[bloom1.cpp
[§ cameral.cpp
IE' Cameral.h
[§ ChessMain.cpp
[i chessRuleh
[§ EVAOBO.cpp
[ii EVAOBO.h
[json.h
[§ Mesh1.cpp
[E Mesh1h
[§ Modell.cpp
[E Model1h
[§ Objectect.cpp
[1f Objectetch
™ OpenGL2.vcxproj

&1 OpenGL2.voxproj filters
&) OpenGL2.vcxproj.user

2021/12/20 2:41
2021/12/20 2:41
2021/12/20 2:41
2021/12/20 2:41
2021/12/20 2:41
2021/12/20 2:41
2021/12/20 14:27
2021/12/19 23:34
2021/12/20 2:14
2021/12/19 23:04
2021/12/20 13:54
2021/12/20 14:05
2021/12/15 22:42
2021/12/16 20:16
2021/11/26 23:08
2021/12/16 22:32
2021/12/16 1:23
2021/12/20 1:49
2021/12/20 2:07
2021/12/18 21:49
2021/12/18 22:05
2021/12/20 0:.07
2021/12/20 0:.07
2021/11/29 16:27

HDR floder: including HDR file that using in IBL
HLSL_Shader floder: including all vertices shader and fragment shader
Skybox?2 floder: including the skybox textures.

1k
1k
1k
1k
1k
ik
LSS

C++ Source

KKK KKK

C++ Source
C/C++ Header
C++ Source
C/C++ Header
C++ Source
C/C++ Header
C/C++ Header
C++ Source
C/C++ Header
C++ Source
C/C++ Header
C++ Source
C/C++ Header
VC++ Project

VC++ Project Filter...
Per-User Project O...

Models_new floder: including the board and chess model in form of gltf

1KB
5KB
2 KB
13 KB
22 KB
2 KB
2 KB

1,083 KB

3KB
1KB
14 KB
11 KB
2 KB
1KB
9 KB
5KB
1KB

15875 » BigHW » vFinal Demostrate » vFinal » OpenGL2 > models new »

e

N ER B HEA
Black 2021/12/20 2:41
BoardFixed 2021/12/20 2:41
White 2021/12/20 2:41
« BigHW » vFinal Demostrate » vFinal > OpenGL2 » models new > Black » Knight £ EEZ="Knight”
ALLbin AlLgltf ao.jpg fishscale 1 rou M baseCo\oUp M_height.png 7mtacRu
ghness-. ZKJpg ghness.jpg

M_normal.jpg Material_1754.j Material_1762j woodparquet 6
#J pg pg 0_roug hpess—QK
-2Kjpg

In each model, we have 9 textures.
List and explain the contents of your projects.

Implementation

® Model loading: it’s surprised that gltf format is not unified. When we changed models,
we have to change the program to adapt to each gltf model.
® Code restructure: First, we use YouTube's mesh and model class, but soon we found their
functions are limited. We add texture items to adapt PBR’s need.
® Texture loading: We used a parameter to determine the texture item, which let us load
all kinds of texture in one function.
® FBO: FBO is not a set of data, but a container. When we use it, we must attach more than
one set of data on it.
® Chess move algorithm: Specialized for better display effect. Step with chess or a larger
movement range are prior to take.
® Animations: Add smooth animations to the chess when interacting and floating effect
when it's still.
® Camera control: All control can be done by one mouse/touchpad/touchscreen.
® Debug: Because OpenGL program is hard to debug, we use professional tool to debug
the program.

Detalls for animations:

Control logic

Control by frame is not stable enough due to the variation of the frame rate, so we
choose to control by time: record the time when the animation starts, and calculate which
frame the animation should render according to [current time-start time].

x = float(info.currentFrame) / float(max_frame[info.moveType]): (E€[0, 1])

Packaging logic:
wAMNE: FEABAL, shaders i 5[],
THEZ: MR A RAZ 3 T R T AT GRS BRI ALKR
TEGZ: MR AL bR T 52 (B AR AR I TE G o

Animation: Float effect

g L AT B ROR
MrfIE: 05~1~05~0~05
] sin BR B 32 50 5 n-F1E -
height = 0.5 = (1 + sin(x * 2 * PI));

Animation: Move
x=[0,0.25) JiZ
height=0.5+2.5*sin(PI * 2 * x) [0.5~3]

x=[0.25,0.75) 3l

height=3

X=0xp0os+(xpos-oxpos)*[(x-0.25)*2]

Y=oypos+(ypos-oypos)*[(x-0.25)*2]
(XY WA sin SRALIZBNFD

x=[0.751] %%
height=3-2.5+sin(Pl * 2 * (x - 0.75)) [3~0.5]

Animation: Disappear

AE IR NFR

color_r = (rand() % 3) / 2;

AE R fE—F: NEOIFIRETAE A B

colorr=(1-x)*2;

o RO T E A L.

lightColor_1 = glm:vec4(color_r / 2, color_r / 3, color_r / 4, 1.0f);
EI BT R IR A 5, SREALT I R BoRIR AL,

Details for camera control:

Location and orientation

Inspiration obtained when using Blender to observe the model.

Take the chessboard (0,0,0) as the center, fix a radius to make a sphere, and let the
camera move on the surface of the sphere. Meanwhile, make the camera always point to the

center of the chessboard.
Pros:

Only need to calculate the camera position, all other parameters can be derived through
matrix transformation.

FEMLEAR = B HUR: Orientation = glm:normalize(-Position):

filA & = Position x (0,1,0)

No misoperation: the camera won't point to or go to a wrong place, which is harder to
reset.

Convenient to limit the radius range and the rotation range, thus avoid mold wear.

Simplified operation logic: a mouse, or touch pad, or touch screen can complete all
operations.

Zoom

Use the scroll wheel to zoom.

Zooming is achieved by simultaneously x0.95 or +0.95 to the camera's three-
dimensional coordinates.

Calculate the radius from the coordinates. If the radius exceeds the limit range after
zooming, cancel it.

Auto move
After every 3 moves, the lens will rotate 180° to the opposite angle of view.

Details for bloom effect:

Bloom is an effect used to reproduce and imaging artifact of real-world cameras. It is an
aura-like color around bright lights that gives them the appearance of being brighter than
they really are in reality. The effect produces feathers of light, which extends from the edge
of lighting area in a picture, leading to the illusion of an extremely bright light, which
overwhelming the camera or eye capturing the scene.

In practice, we implement this effect by generally 3 steps:

Firstly, we render our model as we did it before, except we also render all the bright spots
of our model in another texture.

Secondly, we implement the blur in post-processing. Now that these two are separated,
we can blur the second one. The algorithm we use to blur the model and the steps we do
that will decide the quality of our bloom effect. In our project, we use a Gaussian blur.
Gaussian blur is based on the Gaussian curve which is commonly described as a bell-shaped
curve giving high values close to its center that gradually wear off over distance. The Gaussian
curve can be mathematically represented in different forms, but generally has the following
shape:

We blur our image for two times using the framebuffer objects. After the horizontal and
vertical pass implemented in shader on image respectively, we hold two shading together.
Lastly, we bind the two models we've rendered. And we adjusted the parameters of Gaussian
blur in the second step based on the final effect of the binding.

Details for debugging:

Sometimes it is difficult to find problems in openGL using common debugging methods.
The method of setting breakpoints is used to view the main logic errors, but if there is a
problem in the GLSL syntax, it is actually more difficult to find it out.

When writing the fragment shader of PBR, there was a problem that the texture could
not be displayed normally. We used the third-party software RenderDoc to debug and found
that there was a problem in the texture part of the rendering pipeline, which gave us great
inspiration.

crn to capture. Frame: 138716. 4.14 ms (1.82 .. 27.52) (241. FPS)

E“"“ pas, ! *“l&h’g -

ETexture Viewer X Pipeline State X |Mesh Viewer X |E OpenlZ [PID 25592] X|

Controls o Show Ummsed Ttems 1 Show Empty Items 'jm_‘Export ‘ﬁ Extensions

[VIX H VS]” TCS = TES & GS —{ RS H FS H FB] Cs
Shader

|Prog:ran 48 37 > Shader 4757 ||::>‘|l'iew SRt v [F]save

¥ Textures

Slot Resource Type Width |Height Depth [Array Size Format Go |4

Uoalbeddin0 Tetwe 82 . Tetwel 2 02 11 memswem
@ metdlidled Textwre 830 TetweI 10 2 1 1 GHGGEC
3]

3. irradianceMap Texture ?U@@ Texture Cube 32 32 1 R16G16E16_FLOAT E:>

T "
4 Lile..ar .. 31 @ Toeees, ool 1 1 1 T1S,1STIS BIOAT =,

¥ Zamplers

Slot [Object [Wrap Mode [Filter [LOD Clanp LOD Bias ‘
0: normalMapd Texture 81 % ST Repeat | MindMagfMip: Linear -1000 - 1000 |0
1: albedoMapD .Textu.re 32@@ .STR: Repeat :Min&‘ﬂag\?dﬂip: Linear .—IDDD - 1000 .D
2. metallicMapl Texture 33@@ STR: Repeat MiniMaglip: Linear —1000 - 1000 1]
3. irradianceMap .Texture ?U@@ .STR: ClampEdze Seamless .Min&Mag: Linear, Mip: Hone .—IDDD — 1000 .D

A £17 & ol Toms 71 & ok - 3 1 W A B e T4 —100n — 1000 0

Slot [Buffer Byte Range Size =
Uniforms 3 Variables]

Results

This project is open source: watermellye/chessCG: i BAHLEE Y /ANATTH (github.com)
Demo video: OpenGL SEI) [E bR SR BE AR IEMEERE bilibili
Please see “how to run” in repo.

SN

https://github.com/watermellye/chessCG
https://www.bilibili.com/video/BV1EY411a7FE/

>

AR

Roles in group

® All of us contributed for model choosing and making, especially & Z 18 contributed
hardest work. What's more, she used Jason to analysis gltf model and load the model
into the project.

® 7SR choose and wrote the skybox. And he with fLIK/R, X Z 1 were responsible and
HDR.

® [&EMI made the frame of the project, realized moving, rocking and beating other chess
pieces with well-organized camera controlling and moving.

® PWiFX generated special effects of beating other chess pieces. First, he tried particle
system. But the effect is not good enough, he bring about bloom effect.

® JfLZHE and fLIKR brought out pbr technique and added Gamma Correction and IBL,
using the results of HDR to achieve better effect.

® \What's more, fLZ3E tried to add shadow, but the results looked odd as the chess
pieces are rocking. So the shadow is not added in the final project.

® |ast fLIRR B BREMT made great effort in merging codes.

References

® |earnOpenGL CN
® OpenGL tutorial YouTube

	Project report for the CG 100433 course
	Project Title
	Team member
	Abstract
	Motivation
	The Goal of the project
	The Scope of the project
	Involved CG techniques
	Project contents
	Implementation
	Details for animations:
	Details for camera control:
	Details for bloom effect:
	Details for debugging：

	Results
	Roles in group
	References

